Policy Information
EL之GB(GBM):利用GB对回归(性别属性编码+调2参)问题(整数值年龄预测)建模
目录
T1、
T2、
- T1
- nEst = 2000
- depth = 5
- learnRate = 0.003
- maxFeatures = None
- subsamp = 0.5
-
- T2
- nEst = 2000
- depth = 5
- learnRate = 0.005
- maxFeatures = 3
- subsamp = 0.5
-
-
- abaloneGBMModel = ensemble.GradientBoostingRegressor(n_estimators=nEst, max_depth=depth,
- learning_rate=learnRate, max_features=maxFeatures,
- subsample=subsamp, loss='ls')
-
- abaloneGBMModel.fit(xTrain, yTrain)
-
- compute mse on test set
- msError = []
- predictions = abaloneGBMModel._staged_decision_function(xTest)
- for p in predictions:
- msError.append(mean_squared_error(yTest, p))
评论