Policy Information
EL之RF(RFC):利用RF对多分类问题进行建模并评估(六分类+分层抽样)
目录
- missCLassError = []
- nTreeList = range(50, 2000, 50)
- for iTrees in nTreeList:
- depth = None
- maxFeat = 4 try tweaking
- glassRFModel = ensemble.RandomForestClassifier(n_estimators=iTrees, max_depth=depth, max_features=maxFeat,
- oob_score=False, random_state=531)
-
- glassRFModel.fit(xTrain,yTrain)
-
- prediction = glassRFModel.predict(xTest)
- correct = accuracy_score(yTest, prediction)
-
- missCLassError.append(1.0 - correct)
评论