Policy Information
EL之RF(RFC):利用RF对二分类问题进行建模并评估
目录
- auc = []
- nTreeList = range(50, 2000, 50)
- for iTrees in nTreeList:
- depth = None
- maxFeat = 8
- rocksVMinesRFModel = ensemble.RandomForestClassifier(n_estimators=iTrees, max_depth=depth, max_features=maxFeat,
- oob_score=False, random_state=531)
-
- rocksVMinesRFModel.fit(xTrain,yTrain)
-
- prediction = rocksVMinesRFModel.predict_proba(xTest)
- aucCalc = roc_auc_score(yTest, prediction[:,1:2])
- auc.append(aucCalc)
评论