Policy Information
EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
目录
- 4.1、当treeDepth=1,对图进行可视化
- (1)、定义numTreesMax、treeDepth
- numTreesMax = 30
- treeDepth = 1 ----------------------▲▲▲▲▲
-
-
-
- modelList = []
- predList = []
-
-
- number of samples to draw for stochastic bagging
- nBagSamples = int(len(xTrain) * 0.5)
-
-
- for iTrees in range(numTreesMax):
- idxBag = []
- for i in range(nBagSamples):
- idxBag.append(random.choice(range(len(xTrain))))
- xTrainBag = [xTrain[i] for i in idxBag]
- yTrainBag = [yTrain[i] for i in idxBag]
-
- modelList.append(DecisionTreeRegressor(max_depth=treeDepth))
- modelList[-1].fit(xTrainBag, yTrainBag)
-
- latestPrediction = modelList[-1].predict(xTest)
- predList.append(list(latestPrediction))
-
- mse = []
- allPredictions = []
- for iModels in range(len(modelList)):
- prediction = []
- for iPred in range(len(xTest)):
- prediction.append(sum([predList[i][iPred] for i in range(iModels + 1)])/(iModels + 1))
-
- allPredictions.append(prediction)
- errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
- mse.append(sum([e * e for e in errors]) / len(yTest))
-
-
- 4.2、当treeDepth=1,对图进行可视化
- (1)、定义numTreesMax、treeDepth
- numTreesMax = 30
- treeDepth = 5 ----------------------▲▲▲▲▲
-
-
-
-
- 4.3、当treeDepth=12,对图进行可视化
- (1)、定义numTreesMax、treeDepth
-
- numTreesMax = 100 ----------------------☆☆☆☆☆
- treeDepth = 12 ----------------------☆☆☆☆☆
-
-
评论