Policy Information
TF:利用TF读取数据操作,将CIFAR-10 数据集中的训练图片读取出来,并保存为.jpg 格式
目录
- def inputs_origin(data_dir):
- filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
- for i in range(1, 6)]
- ……
-
- filename_queue = tf.train.string_input_producer(filenames)
-
-
- read_input = cifar10_input.read_cifar10(filename_queue)
- reshaped_image = tf.cast(read_input.uint8image, tf.float32)
-
- return reshaped_image
-
- if __name__ == '__main__':
-
- with tf.Session() as sess:
- reshaped_image = inputs_origin('cifar10_data/cifar-10-batches-bin')
-
- threads = tf.train.start_queue_runners(sess=sess)
-
- sess.run(tf.global_variables_initializer())
-
- if not os.path.exists('cifar10_data/raw/'):
- os.makedirs('cifar10_data/raw/')
-
- for i in range(30):
- image_array = sess.run(reshaped_image)
- scipy.misc.toimage(image_array).save('cifar10_data/raw/%d.jpg' % i)
-
评论