Policy Information
CV:利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label
CV:利用cv2(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)并标注代码实现
目录
gitee链接:
- CV:基于Keras利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu
- import sys
-
- import cv2
- from keras.models import load_model
- import numpy as np
-
- image_path ="F:/File_Python/Resources/hezhao05.jpg"
- detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
- emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
- gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
- emotion_labels = get_labels('fer2013')
- gender_labels = get_labels('imdb')
- font = cv2.FONT_HERSHEY_SIMPLEX
-
- gender_offsets = (30, 60)
- gender_offsets = (10, 10)
- emotion_offsets = (20, 40)
- emotion_offsets = (0, 0)
-
- face_detection = load_detection_model(detection_model_path)
- emotion_classifier = load_model(emotion_model_path, compile=False)
- gender_classifier = load_model(gender_model_path, compile=False)
-
-
- emotion_target_size = emotion_classifier.input_shape[1:3]
- gender_target_size = gender_classifier.input_shape[1:3]
-
- rgb_image = load_image(image_path, grayscale=False)
- gray_image = load_image(image_path, grayscale=True)
- gray_image = np.squeeze(gray_image)
- gray_image = gray_image.astype('uint8')
-
- faces = detect_faces(face_detection, gray_image)
-
- for face_coordinates in faces:
- x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
- rgb_face = rgb_image[y1:y2, x1:x2]
-
- x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
- gray_face = gray_image[y1:y2, x1:x2]
-
- try:
- rgb_face = cv2.resize(rgb_face, (gender_target_size))
- gray_face = cv2.resize(gray_face, (emotion_target_size))
- except:
- continue
- rgb_face = preprocess_input(rgb_face, False)
- rgb_face = np.expand_dims(rgb_face, 0)
- gender_prediction = gender_classifier.predict(rgb_face)
- gender_label_arg = np.argmax(gender_prediction)
- gender_text = gender_labels[gender_label_arg]
-
- gray_face = preprocess_input(gray_face, True)
- gray_face = np.expand_dims(gray_face, 0)
- gray_face = np.expand_dims(gray_face, -1)
- emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
- emotion_text = emotion_labels[emotion_label_arg]
-
- if gender_text == gender_labels[0]:
- color = (255, 255, 0)
- else:
- color = (255, 0, 0)
-
- draw_bounding_box(face_coordinates, rgb_image, color)
- draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
- draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
-
- bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
- save_img='F:/File_Python/Resources/hezhao041.jpg'
- cv2.imwrite(save_img, bgr_image)
-
- cv2.imshow('Emotion and Gender test', rgb_image)
-
- cv2.waitKey(0)
- cv2.destroyAllWindows()
类似案例:https://blog.csdn.net/qq_41185868/article/details/90488469
评论