Policy Information
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
目录
更新……
- import mnist_loader
- import network
-
- training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
-
- print("training_data")
- print(type(training_data))
- print(list(training_data))
- print(training_data[0][0].shape)
- print(training_data[0][1].shape)
-
- net = network.Network([784, 30, 10])
- net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
- import random
-
- import numpy as np
-
- class Network(object):
-
- def __init__(self, sizes):
- """The list ``sizes`` contains the number of neurons in the
- respective layers of the network. For example, if the list
- was [2, 3, 1] then it would be a three-layer network, with the
- first layer containing 2 neurons, the second layer 3 neurons,
- and the third layer 1 neuron. The biases and weights for the
- network are initialized randomly, using a Gaussian
- distribution with mean 0, and variance 1. Note that the first
- layer is assumed to be an input layer, and by convention we
- won't set any biases for those neurons, since biases are only
- ever used in computing the outputs from later layers."""
- self.num_layers = len(sizes)
- self.sizes = sizes
- self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
-
- self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
-
-
- def feedforward(self, a):
- """Return the output of the network if ``a`` is input."""
- for b, w in zip(self.biases, self.weights):
- a = sigmoid(np.dot(w, a)+b)
- return a
-
- def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
- """Train the neural network using mini-batch stochastic
- gradient descent. The ``training_data`` is a list of tuples
- ``(x, y)`` representing the training inputs and the desired
- outputs. The other non-optional parameters are
- self-explanatory. If ``test_data`` is provided then the
- network will be evaluated against the test data after each
- epoch, and partial progress printed out. This is useful for
- tracking progress, but slows things down substantially."""
- if test_data:
- n_test = len(test_data)
- n = len(training_data)
- for j in xrange(epochs):
- random.shuffle(training_data)
- mini_batches = [training_data[k:k+mini_batch_size]
- for k in xrange(0, n, mini_batch_size)]
- for mini_batch in mini_batches:
- self.update_mini_batch(mini_batch, eta)
- if test_data:
- print ("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
-
- else:
- print ("Epoch {0} complete".format(j))
-
- def update_mini_batch(self, mini_batch, eta):
- """Update the network's weights and biases by applying
- gradient descent using backpropagation to a single mini batch.
- The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
- is the learning rate."""
- nabla_b = [np.zeros(b.shape) for b in self.biases]
- nabla_w = [np.zeros(w.shape) for w in self.weights]
- for x, y in mini_batch:
- delta_nabla_b, delta_nabla_w = self.backprop(x, y)
- nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
- nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
- self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
-
- self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]
-
- def backprop(self, x, y):
- """Return a tuple ``(nabla_b, nabla_w)`` representing the
- gradient for the cost function C_x. ``nabla_b`` and
- ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
- to ``self.biases`` and ``self.weights``."""
- nabla_b = [np.zeros(b.shape) for b in self.biases]
- nabla_w = [np.zeros(w.shape) for w in self.weights]
- feedforward
- activation = x
- activations = [x] list to store all the activations, layer by layer
- zs = [] list to store all the z vectors, layer by layer
- for b, w in zip(self.biases, self.weights):
- z = np.dot(w, activation)+b
- zs.append(z)
- activation = sigmoid(z)
- activations.append(activation)
- backward pass
- delta = self.cost_derivative(activations[-1], y) * \
- sigmoid_prime(zs[-1])
- nabla_b[-1] = delta
- nabla_w[-1] = np.dot(delta, activations[-2].transpose())
- Note that the variable l in the loop below is used a little
- differently to the notation in Chapter 2 of the book. Here,
- l = 1 means the last layer of neurons, l = 2 is the
- second-last layer, and so on. It's a renumbering of the
- scheme in the book, used here to take advantage of the fact
- that Python can use negative indices in lists.
- for l in xrange(2, self.num_layers):
- z = zs[-l]
- sp = sigmoid_prime(z)
- delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
- nabla_b[-l] = delta
- nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
- return (nabla_b, nabla_w)
-
- def evaluate(self, test_data):评估,
- """Return the number of test inputs for which the neural
- network outputs the correct result. Note that the neural
- network's output is assumed to be the index of whichever
- neuron in the final layer has the highest activation."""
- test_results = [(np.argmax(self.feedforward(x)), y)
- for (x, y) in test_data]
- return sum(int(x == y) for (x, y) in test_results)
-
- def cost_derivative(self, output_activations, y):
- """Return the vector of partial derivatives \partial C_x /
- \partial a for the output activations."""
- return (output_activations-y)
-
-
- def sigmoid(z):
- """The sigmoid function."""
- return 1.0/(1.0+np.exp(-z))
-
- def sigmoid_prime(z):
- """Derivative of the sigmoid function."""
- return sigmoid(z)*(1-sigmoid(z))
- import pickle as cPickle
- import gzip
-
- import numpy as np
-
- def load_data():
- """Return the MNIST data as a tuple containing the training data,
- the validation data, and the test data.
-
- The ``training_data`` is returned as a tuple with two entries.
- The first entry contains the actual training images. This is a
- numpy ndarray with 50,000 entries. Each entry is, in turn, a
- numpy ndarray with 784 values, representing the 28 * 28 = 784
- pixels in a single MNIST image.
-
- The second entry in the ``training_data`` tuple is a numpy ndarray
- containing 50,000 entries. Those entries are just the digit
- values (0...9) for the corresponding images contained in the first
- entry of the tuple.
-
- The ``validation_data`` and ``test_data`` are similar, except
- each contains only 10,000 images.
-
- This is a nice data format, but for use in neural networks it's
- helpful to modify the format of the ``training_data`` a little.
- That's done in the wrapper function ``load_data_wrapper()``, see
- below.
- """
- f = gzip.open('../data/mnist.pkl.gz', 'rb')
- training_data, validation_data, test_data = cPickle.load(f,encoding='bytes') (f,encoding='bytes')
- f.close()
- return (training_data, validation_data, test_data)
-
- def load_data_wrapper():
- """Return a tuple containing ``(training_data, validation_data,
- test_data)``. Based on ``load_data``, but the format is more
- convenient for use in our implementation of neural networks.
-
- In particular, ``training_data`` is a list containing 50,000
- 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
- containing the input image. ``y`` is a 10-dimensional
- numpy.ndarray representing the unit vector corresponding to the
- correct digit for ``x``.
-
- ``validation_data`` and ``test_data`` are lists containing 10,000
- 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
- numpy.ndarry containing the input image, and ``y`` is the
- corresponding classification, i.e., the digit values (integers)
- corresponding to ``x``.
-
- Obviously, this means we're using slightly different formats for
- the training data and the validation / test data. These formats
- turn out to be the most convenient for use in our neural network
- code."""
- tr_d, va_d, te_d = load_data()
- training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
- training_results = [vectorized_result(y) for y in tr_d[1]]
- training_data = zip(training_inputs, training_results)
- validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
- validation_data = zip(validation_inputs, va_d[1])
- test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
- test_data = zip(test_inputs, te_d[1])
- return (training_data, validation_data, test_data)
-
- def vectorized_result(j):
- """Return a 10-dimensional unit vector with a 1.0 in the jth
- position and zeroes elsewhere. This is used to convert a digit
- (0...9) into a corresponding desired output from the neural
- network."""
- e = np.zeros((10, 1))
- e[j] = 1.0
- return e
评论