Policy Information
TF之LiR:基于tensorflow实现手写数字图片识别准确率
目录
- Extracting MNIST_data\train-images-idx3-ubyte.gz
- Please use tf.data to implement this functionality.
- Extracting MNIST_data\train-labels-idx1-ubyte.gz
- Please use tf.one_hot on tensors.
- Extracting MNIST_data\t10k-images-idx3-ubyte.gz
- Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
- Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
- Datasets(train=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x00000207535F9EB8>, validation=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x00000207611319E8>, test=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x0000020761131A20>)
- 迭代次数Epoch: 0001 下降值cost= 0.000000000
- 迭代次数Epoch: 0002 下降值cost= 0.000000000
- 迭代次数Epoch: 0003 下降值cost= 0.000000000
- 迭代次数Epoch: 0004 下降值cost= 0.000000000
- 迭代次数Epoch: 0005 下降值cost= 0.000000000
- 迭代次数Epoch: 0006 下降值cost= 0.000000000
- 迭代次数Epoch: 0007 下降值cost= 0.000000000
- 迭代次数Epoch: 0008 下降值cost= 0.000000000
- 迭代次数Epoch: 0009 下降值cost= 0.000000000
- 迭代次数Epoch: 0010 下降值cost= 0.000000000
- 迭代次数Epoch: 0011 下降值cost= 0.000000000
- 迭代次数Epoch: 0012 下降值cost= 0.000000000
- 迭代次数Epoch: 0013 下降值cost= 0.000000000
- 迭代次数Epoch: 0014 下降值cost= 0.000000000
- 迭代次数Epoch: 0015 下降值cost= 0.000000000
- 迭代次数Epoch: 0016 下降值cost= 0.000000000
- ……
- 迭代次数Epoch: 0099 下降值cost= 0.000000000
- 迭代次数Epoch: 0100 下降值cost= 0.000000000
- Optimizer Finished!
- -*- coding: utf-8 -*-
-
- TF之LiR:基于tensorflow实现手写数字图片识别准确率
-
- import os
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
-
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
-
- mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
- print(mnist)
-
- 设置超参数
- lr=0.001 学习率
- training_iters=100 训练次数
- batch_size=128 每轮训练数据的大小,如果一次训练5000张图片,电脑会卡死,分批次训练会更好
- display_step=1
-
- tf Graph的输入
- x=tf.placeholder(tf.float32, [None,784])
- y=tf.placeholder(tf.float32, [None, 10])
-
- 设置权重和偏置
- w =tf.Variable(tf.zeros([784,10]))
- b =tf.Variable(tf.zeros([10]))
-
- 设定运行模式
- pred =tf.nn.softmax(tf.matmul(x,w)+b)
- 设置cost function为cross entropy
- cost =tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1))
- GD算法
- optimizer=tf.train.GradientDescentOptimizer(lr).minimize(cost)
-
- 初始化权重
- init=tf.global_variables_initializer()
- 开始训练
- with tf.Session() as sess:
- sess.run(init)
- for epoch in range(training_iters): 输入所有训练数据
- avg_cost=0.
- total_batch=int(mnist.train.num_examples/batch_size)
- for i in range(total_batch): 遍历每个batch
- batch_xs,batch_ys=mnist.train.next_batch(batch_size)
- _, c=sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys}) 把每个batch数据放进去训练
- avg_cost==c/total_batch
- if (epoch+1) % display_step ==0: 显示每次迭代日志
- print("迭代次数Epoch:","%04d" % (epoch+1),"下降值cost=","{:.9f}".format(avg_cost))
- print("Optimizer Finished!")
-
- 测试模型
- correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
- accuracy=tf.equal_mean(tf.cast(correct_prediction),tf.float32)
- print("Accuracy:",accuracy_eval({x:mnist.test.image[:3000],y:mnist}))
评论