Learning Activities
TF之NN:基于Tensorflow利用神经网络算法对数据集(用一次函数随机生成100个数)训练预测斜率、截距(逼近已知一次函数)
目录
- import os
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
- import tensorflow as tf
- import numpy as np
-
- x_data = np.random.rand(100).astype(np.float32)
- y_data = x_data*0.1 + 0.3
-
- Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
- biases = tf.Variable(tf.zeros([1]))
-
- y = Weights*x_data + biases
-
- loss = tf.reduce_mean(tf.square(y-y_data))
- optimizer = tf.train.GradientDescentOptimizer(0.5)
- train = optimizer.minimize(loss)
-
- init = tf.initialize_all_variables()
- init = tf.global_variables_initializer()
-
- create tensorflow structure end
-
- sess = tf.Session()
- sess.run(init)
-
- for step in range(201):
- sess.run(train)
- if step % 10 == 0:
- print(step, sess.run(Weights), sess.run(biases))
相关文章
TF:Tensorflow之一次函数应用,随机生成100个数,利用Tensorflow训练使其逼近已知一次函数的斜率和截距
评论